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Abstract—In this paper, asynchronous wireless source local-
ization using time-of-arrival (TOA) measurements is studied.
In TOA localization, the travel time of the signal between the
source node and anchor nodes is measured and used to estimate
range. In synchronous networks, the anchor nodes know when
the source node starts transmission. In asynchronous networks,
however, the source transmit time is unknown and TOA mea-
surements have a positive bias due to the synchronization error
which could lead to a large localization error. One way to
tackle this problem is to use time-difference-of-arrival (TDOA)
measurements which do not depend on the source transmission
time. However, in this work, applying an alternative approach,
we estimate the source transmit time as a nuisance parameter
jointly with the source location. The optimal maximum likelihood
(ML) estimator is derived. To avoid the ML convergence problem,
a novel semidefinite programming (SDP) technique is proposed
by converting the noncovex ML problem into a convex one.
Computer simulations showing superior performance of the
proposed SDP estimator are conducted.

Index Terms—time-of-arrival (TOA), source localization,
semidefinite programming (SDP), asynchronous networks.

I. INTRODUCTION

Wireless sensor networks (WSN) have recently been pro-

posed in a wide range of military, commercial, and industrial

applications. One of the most important issues in WSN is that

the location of each sensor should be determined. However,

it would be expensive and impractical to equip all sensors

in the network with a Global Positioning System (GPS)

receiver. Moreover, GPS makes sensors bulkier and uses more

energy. As a result, the concept of source localization has

emerged in which sensors are localized by using noisy mea-

surements among themselves [1]–[3]. In source localization,

there are some anchor nodes with known locations which

localize the source node with an unknown location using noisy

measurements. Different measurement techniques typically

used in source localization include time-of-arrival (TOA) [4],

time-difference-of-arrival (TDOA) [5], received signal strength

(RSS) [6], [7], and angle of arrival [8].

In TOA, anchor nodes measure the travel time of the signal

from the source node [1]. TOA requires the source node and

anchor nodes to be synchronized perfectly which means that

the anchor nodes should know when the source node starts

its transmission [1]. Although the ease of implementation as

well as the high accuracy when using wide-band signals has

led TOA to be used in WSN [3], synchronization in WSN is

more challenging and makes the network more complicated.

There are generally three approaches to deal with the networks

where the sensors are not synchronized [1]. First, one can use

a two-way TOA technique in which the anchor node transmits

a signal and measures the round trip travel time from the

anchor node to the source node [9]. However, in two-way

TOA, the source node should be able to send and receive

data, unlike the classic TOA technique in which the source

node is only required to send data. Moreover, the internal

delay of the source node should be taken into account which

may be different for each sensor [1]. Second, TDOA provides

another solution for asynchronous networks [5], [10], [11].

In TDOA, an anchor node is selected as a reference and its

TOA measurement is subtracted from the TOA measurements

of other anchor nodes which removes the dependency of

the measurements on the source transmit time. However, this

approach enhances correlation among the measurements which

can lead to accuracy degradation [2]. Last but not least,

one can estimate the source transmit time jointly with the

source location by directly using TOA measurements [12].

In this work, we concentrate on the last approach to deal

with asynchronous networks. It should be noted, the last

two techniques require synchronization among anchor nodes

rather than between the source node and the anchor nodes.

Moreover, no matter which of the above techniques is used,

the accuracy of the localization degrades in asynchronous

networks in comparison with synchronous ones. This is the

cost that must be paid for the lack of synchronization between

the source and the anchor nodes in the network.

The Cramér-Rao lower bound (CRLB) of TOA localization

is derived in [1]. The maximum likelihood (ML) estimator

provides the optimal accuracy asymptotically, meaning that it

can attain the CRLB for sufficiently high signal-to-noise ratio

(SNR) [13]. However, the cost function of the ML estimator

is highly nonlinear and nonconvex [4], [14] and does not

have a closed-form solution. However, the solution of the ML

estimator can be approximately found by using iterative algo-

rithms [15]. The problem is that iterative algorithms require a

good starting point to guarantee that the estimator converges

to the global minimum. Even with a good initial point, the

algorithm may converge to either a local minimum or a saddle

point introducing a large estimation error. Linearization and

convex relaxation have been applied to tackle the convergence

problem of the ML estimator. The performance of linear

estimators is poor, especially when either the number of

available anchor nodes is limited or the source node is located

outside the convex hull of the anchor nodes [10], [16]. Convex



relaxation provides reasonably higher accuracy, although the

complexity increases in comparison with linear estimators [5],

[11], [17]–[19].

In this work, asynchronous TOA-based source localization

using semidefinite programming (SDP) technique is studied.

SDP is a form of convex optimization which unlike the

nonconvex ML estimator does not have convergence problems.

An SDP estimator using TDOA measurements is derived in

[5]. Here, considering an alternative solution for asynchronous

TOA networks, we proposed an SDP estimator which tries to

estimate the source transmit time jointly with the source loca-

tion. Although the problem was previously considered in [5],

[17], exploiting a different relaxation technique the proposed

SDP estimator has considerably higher accuracy and lower

complexity than the SDP estimators in [17] and [5]. Unlike

previous studies, moreover, the performance of the proposed

SDP and previously studied estimators is evaluated under non-

line-of-sight (NLOS) propagation which significantly affects

the accuracy of localization in indoor environments [20]–[22].

The following notation is used through the paper. Lowercase

and uppercase letters denote scalar values. Bold uppercase and

bold lowercase letters denote matrices and vectors, respec-

tively. ‖ · ‖2 denotes the ℓ2 norm. IM and 0M denote the

M ×M identity and the M ×M zero matrices, respectively.

For arbitrary symmetric matrices A and B, A � B means

that A−B is positive semidefinite.

II. SYSTEM MODEL

In this section, the measurement model of asynchronous

TOA localization will be described. We consider a network

with M anchor nodes whose locations are known and one

source node with an unknown location. Denote by yi ∈ R
2,

i = 1, 2, . . . ,M the location of the ith anchor node and by

x ∈ R
2 the location the source node to be estimated. The

measured TOA at the ith anchor node is modeled as [1], [2]

ti =
di

c
+ τ + vi, i = 1, 2, . . . ,M, (1)

where c is the propagation velocity of the signal depending

on the environment where the network is placed (e.g., the

propagation velocity in free space is c ≈ 3×108 m/s). vi is the

measurement noise modeled as a zero-mean Gaussian random

variable and di = ‖x− yi‖2 is the true distance between the

source node and the ith anchor node. τ is the source transmit

time appeared in the model due to lack of synchronization

between the source node and anchor nodes. In synchronous

networks, the anchor nodes know when exactly the source

node transmit the signal and τ is available to the estimator.

Therefore, bias-free TOA measurements can be simply ob-

tained by subtracting τ from all measurements. However, in

this work, we assume that sensors are asynchronous where

the transmit time is unknown and should be estimated. For

simplicity, all obtained TOA measurements are multiplied by

the propagation velocity to obtain distance information as

ri = cti = di + d0 + ni, (2)

where ri would be the measured distance. d0 = cτ is an

unknown distance added to the measured distance due to

unknown transmit time and ni = cvi is the measurement

error. Since the accuracy of TOA measurements is related to

the received SNR [1], [23] which itself is a function to the

distance and path-loss exponent [6], [24], the variance of ni

is typically modeled as [22]

σ2
i = αd

β
i , (3)

where α is a constant which defines the relationship between

the noise variance and the true distance and depends on the

environment where the network is placed. β is the path-loss

exponent which typically varies between 2 and 4 [22]. Again,

we assume that the anchor nodes are synchronized in (1).

III. CRLB AND MAXIMUM LIKELIHOOD ESTIMATION

The CRLB determines a lower bound on the performance

(variance) of any unbiased estimator [13, Ch. 3]. The CRLB

of the unknown parameters, θ = [xTd0]
T, is obtained from

the diagonal elements of the inverse of the Fisher information

matrix [13, Ch. 3]. Denote by r = [r1, r2, . . . , rM ]T the vector

of all measurements and by µ(θ) the mean of the vector r.

The Fisher information matrix of the model in (2) is calculated

as [13, Ch. 3]

I(θ) = F(θ)TWF(θ), (4)

where W = diag{σ−2

1 , σ−2

2 , . . . , σ−2

M } and

F(θ) =
∂µ(θ)

∂θ
=
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The CRLB of the unknown parameter θ is computed as

Var([θ]r) ≥
[

I−1(θ)
]

r,r
. r = 1, 2, 3. (5)

When the number of measurements tends to infinity, the

ML estimator can achieve the CRLB [13]. In other words, the

ML estimator is asymptotically optimal. The ML estimator of

the measurement model in (2) is obtained by the following

optimization problem [13]

θ̂ = argmin
θ∈R3

M
∑

i=1

σ−2

i (ri − di − d0)
2
. (6)

As mentioned in introduction, the cost function in (6) is

severely nonlinear and nonconvex, and does not have a closed-

form solution. The solution of the ML estimator can be

approximately found by iterative numerical techniques such as

the Gauss-Newton method [13], [15]. Such iterative algorithms

require a good initialization so that the algorithm converges to

the global minimum. However, even with a good starting point,

the iterative solver of the ML estimator may return a local

minimum or saddle point which can cause a large estimation

error.



IV. SEMIDEFINITE PROGRAMMING

In this section, the derivation of the proposed SDP approach

is described. First, the nonlinear cost function of the ML

estimator is converted into a convex cost function and then

is formulated as a SDP optimization problem. Unlike the

ML estimator, the proposed SDP technique neither requires

initialization nor has convergence problems [25], [26].

The cost function of the ML estimator in (6) can be

alternatively written as

(r− d− d0)
T
W (r− d− d0) =

Trace

{

W
(

r− (d+ d0)
)(

r− (d+ d0)
)T

}

, (7)

where d = [d1, d2, . . . , dM ]T and d0 = [d0, d0, . . . , d0]
T.

Defining a new vector as h = [d1, d2, . . . , dM , d0]
T, we can

write

d+ d0 = Uh, (8)

where U = [IM ,1M ]. Plugging (8) in (7) yields

Trace
{

W (r−Uh) (r−Uh)
T
}

=

Trace
{

W
(

rrT − 2UhrT +UHUT
)}

, (9)

where H = hhT. The diagonal elements of the matrix H are

[H]ii = d2i =

[

yi

−1

]T [

I2 x

xT z

] [

yi

−1

]

, i = 1, 2, . . . ,M, (10)

where z = xTx. To convert the nonconvex cost function

in (9) into a convex function, we have to relax non-affine

operations. By relaxing the matrix H and the variable z, they

can be written as a linear matrix inequality (LMI) using Schur

complement [5], [25]

z = xTx ⇒

[

I2 x

xT z

]

� 03,

H = hhT ⇒

[

H h

hT 1

]

� 0M+2. (11)

Therefore, the nonlinear and nonconvex ML problem of (6)

can be relaxed into an SDP optimization problem as [25]

minimize
x,z,h,H

Trace
{

W(UHUT − 2UhrT + rrT)
}

subject to [H]ii =

[

yi

−1

]T [

I2 x

xT z

] [

yi

−1

]

,

[

H h

hT 1

]

� 0M+2,

[

I2 x

xT z

]

� 03. (12)

The solution of (12) can be effectively found with the nu-

merical algorithms such as interior point methods [25], [26].

Standard SDP solvers such as SeDuMi [27] is employed to

solve SDP optimization problems in MATLAB.

V. SIMULATION RESULTS

In this section, computer simulations are conducted to

evaluate the performance of the proposed SDP estimator.

TOA measurements were generated based on the measurement
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Fig. 1. The configuration of the simulated network. The solid squares and
the crosses indicate the anchor nodes the locations of the source node,
respectively.

TABLE I
THE AVERAGE RUNNING TIME OF THE CONSIDERED ESTIMATORS.

Estimator Description Time [ms]

ML-TDOA The ML estimator using TDOA in [28] 19.08
ML-TOA-A The ML estimator in (6) 29.52
SDP-NEW The proposed SDP estimator in (12) 60.01
SDP-TDOA The SDP estimator in using TDOA [5] 104.48
SDP-2LS The SDP estimator in [17] 111.58
SDP-MMA The SDP estimator in [17] 37.76
LLS The linear estimator using TDOA in [10] 0.68

model in (1). The propagation speed was set to 3 × 108 m/s.

The values of β and α were set to 2 and 0.05, respectively.

The source transmit time, τ , was drawn from a uniform

distribution U [3.3, 10.3] ns which leads to d0 varying from

1 to 4 m. The ML estimator and four previously considered

estimators were selected for comparison. An SDP estimator

using TDOA measurements is derived in [5]. Two other SDP

estimators are derived in [17] which directly use asynchronous

TOA measurements. A well-known linear least squares (LLS)

estimator using TDOA measurements is derived in [10]. A

summary of the compared estimators is given in Table I. The

ML estimators in (6) and [28] were solved by the MATLAB

routine fminunc and were initialized with the true values.

Thus, these represent performance not truly attainable by ML,

but close to optimal. The proposed SDP and three other SDP

estimators were implemented by the CVX toolbox [29] using

SeDuMi as a solver [27]. The LLS estimator in [10] has a

closed-form solution.

A network with eight anchor nodes and one source node

was considered. The locations of the anchor nodes are fixed

and 441 different locations for the source node are gener-

ated uniformly in a square region of 10m × 10m. Fig. 1

shows the configuration of the simulated network. For each

source location, 100 Monte Carlo realizations were done.

The cumulative distribution function (CDF) of localization
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Fig. 2. The CDF of localization error of the compared estimators in a LOS
environment. The proposed SDP estimator outperforms other estimators and
is very close to the optimal ML estimator.

error of the compared estimators is depicted in Fig. 2. The

depicted CRLB is obtained by averaging over the CRLB of

all source locations. The average running time of the compared

estimators for this network is also given in Table I.

There are two important facts in Fig. 2 that should be noted.

First, the accuracy of localization degrades in asynchronous

networks in comparison with synchronous ones. The CRLB

of asynchronous TOA (labeled as CRLB-TOA-A) is about

60% worse than the CRLB of synchronous TOA [1] (labeled

as CRLB-TOA) for this network configuration. Second, the

ML estimator estimating the source transmit time jointly with

the source location (ML-TOA-A) yields the same localization

performance as the ML estimator using TDOA measurements

(ML-TDOA). Therefore, no matter which asynchronous tech-

nique is used, the optimal ML estimator gives the same

estimate for the source location, since they both use the same

information. However, we will later show that the situation is

different for sub-optimal estimators (e.g., LLS and SDP). In

fact, the performance of the sub-optimal estimators depends

on which asynchronous technique is used. Although it has not

been shown in Fig. 2, we would like to add that based on our

simulations the performance of ML-TDOA does not depend on

which anchor node is selected as the reference. Table I shows

that ML-TDOA has lower running time than ML-TOA-A. The

first reason is that the ML-TDOA uses M − 1 measurements,

while ML-TOA uses M measurements. Another reason is that

ML-TDOA requires a search over a two-dimensional variable,

while ML-TOA-A requires a search over a three-dimensional

variable. Therefore, if the optimal estimator is chosen, it seems

reasonable to use TDOA.

The proposed SDP estimator (SDP-NEW) provides a re-

markable performance and outperforms the other estimators.

The performance of SDP-TDOA is also satisfactory but not

as good as the proposed SDP estimator. As can be seen,

unlike the optimal estimators, SDP-NEW estimating the source
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Fig. 3. The CDF of localization error for the compared estimators in a
NLOS environment. The performance of all estimator degrades in NLOS
environments. However, the proposed SDP estimator shows strong robustness
against NLOS propagation.

transmit time and source location provides higher accuracy

than SDP-TDOA using TDOA measurements. Moreover, it

can be shown that unlike ML-TDOA, the performance of

SDP-TDOA depends on which anchor node is selected as

a reference, since the correlation among measurements is

neglected in SDP-TDOA [5]. It was shown in [30] that the

anchor node whose TOA measurement is the median of

all TOA measurements should be selected as the reference.

The same criterion was used here for SDP-TDOA. Another

drawback of SDP-TDOA is its complexity. Table I also shows

that the running time of SDP-TDOA is almost double that

of SDP-NEW, highlighting another advantage of the proposed

SDP estimator over SDP-TDOA. Fig. 2 also shows that SDP-

NEW outperforms the ML estimator for localization errors

larger than 1.25 m. The larger errors in the ML estimator

curve belong to the locations of the source node that are

outside the convex hull (especially behind the anchor nodes,

e.g., [10, 10]T). At these locations, the cost function of the ML

estimator is very sensitive to the initialization and even though

the estimator was initialized with true values, it returned a local

minimum causing a large localization error. This is the major

problem of the ML estimator that leads us to use alternative

estimators which either are closed-from or do not require

initialization. Both ML estimators have lower running time

than SDP-NEW. However, it should be noted that the solvers

of the ML estimators are initialized with true values which

decreases their running times considerably [7].

Both SDP-2LS and SDP-MMA estimators [17] directly

use asynchronous TOA measurements. However, their perfor-

mance is not as good as SDP-NEW. SDP-2LS requires a tuning

parameter on which the performance of the estimator highly

depends [17]. As a result, for each network configuration,

it is required to find the optimum calibration parameter in

order to achieve good accuracy. SDP-MMA is based on a

min-max formulation which generally has lower accuracy



than minimum mean square estimation [26], although it has

lower complexity. On the other hand, in the formulation of

SDP-MMA, it is required to square the measurements which

causes noise enhancement in the estimator [17]. LLS has

the worst accuracy among the considered estimators mainly

because of simplistic approximations [10], although it has the

fastest running time among the compared estimators. It should

be noted that our observations show that among compared

estimators, SDP-NEW and SDP-2LS are mildly sensitive to

the value of τ . In fact, as τ increases the performance of SDP-

NEW degrades slightly. To provide a numerical example, when

the range of τ was increased by a factor of 4 (i.e., d0 varies

from 1 to 16 m), the accuracy of SDP-NEW degraded 0.1 m

at 60% CDF which is not significant.

Source localization is more useful in indoor environments

where GPS receivers do not work properly. However, the

majority of the available connections in indoor networks are

NLOS because of several obstructions between the source

and anchor nodes [31]. In Fig. 3, the sensitivity of the

compared estimators to NLOS propagation is evaluated. The

same configuration as Fig. 2 was considered except two out

of eight connections were NLOS in this case [20]–[22]. A

NLOS link was generated by adding a large positive bias to its

range estimate. NLOS biases were drawn from an exponential

distribution where its mean was randomly selected from 1 to

4 m. As shown in Fig. 3, the performance of all estimators

degrades in NLOS environments. However, the performances

of the estimators that estimate the source transmit time are

less sensitive to NLOS propagation than the estimators that

use TDOA measurements, since some parts of NLOS biases

are compensated in the estimate of the source transmit time.

VI. CONCLUSION

Asynchronous TOA-based wireless source localization was

examined. In an asynchronous network, the transmit time of

the source node is not known to the anchor nodes, which

causes an unknown bias to appear in the TOA measurement

model. It was shown that localization accuracy degrades in

asynchronous networks in comparison with synchronous ones.

To avoid the maximum likelihood (ML) estimator convergence

problem, a novel semidefinite programming (SDP) estimator

estimating the source transmit time jointly with the source

location was derived. Simulation results showed that the

proposed SDP estimator requiring no initialization provides

remarkable performance which is very close to the optimal

accuracy with a satisfactory complexity.

REFERENCES

[1] N. Patwari, J. Ash, S. Kyperountas, A. Hero III, R. Moses, and
N. Correal, “Locating the nodes: Cooperative localization in wireless
sensor networks,” IEEE Signal Process. Mag., vol. 22, no. 4, pp. 54–69,
Jul. 2005.

[2] A. H. Sayed, A. Tarighat, and N. Khajehnouri, “Network-based wireless
location: challenges faced in developing techniques for accurate wireless
location information,” IEEE Signal Process. Mag., vol. 22, no. 4, pp.
24–40, Jul. 2005.

[3] S. Gezici, Z. Tian, G. B. Giannakis, H. Kobayashi, A. F. Molisch, H. V.
Poor, and Z. Sahinoglu, “Localization via ultra-wideband radios: a look
at positioning aspects for future sensor networks,” IEEE Signal Process.

Mag., vol. 22, no. 4, pp. 70–84, Jul. 2005.

[4] Y.-T. Chan, H. Yau Chin Hang, and P. chung Ching, “Exact and
approximate maximum likelihood localization algorithms,” IEEE Trans.

Veh. Technol., vol. 55, no. 1, pp. 10–16, Jan. 200.

[5] K. Yang, G. Wang, and Z.-Q. Luo, “Efficient convex relaxation methods
for robust target localization by a sensor network using time differences
of arrivals,” IEEE Trans. Signal Process., vol. 57, no. 7, pp. 2775–2784,
Jul. 2009.

[6] N. Patwari, I. Hero, A. O., M. Perkins, N. S. Correal, and R. J. O’Dea,
“Relative location estimation in wireless sensor networks,” IEEE Trans.

Signal Process., vol. 51, no. 8, pp. 2137–2148, Aug. 2003.

[7] R. M. Vaghefi, M. R. Gholami, R. M. Buehrer, and E. G. Ström,
“Cooperative received signal strength-based sensor localization with
unknown transmit powers,” IEEE Trans. Signal Process., vol. 61, no. 6,
pp. 1389–1403, Mar. 2013.

[8] R. M. Vaghefi, M. R. Gholami, and E. G. Ström, “Bearing-only
target localization with uncertainties in observer position,” in Proc.

IEEE International Symposium on Personal, Indoor and Mobile Radio

Communications (PIMRC) workshops, Sept. 2010, pp. 238–242.

[9] D. D. McCrady, L. Doyle, H. Forstrom, T. Dempsey, and M. Martorana,
“Mobile ranging using low-accuracy clocks,” IEEE Trans. Microw.

Theory Techn., vol. 48, no. 6, pp. 951–958, Jun. 2000.

[10] Y. T. Chan and K. C. Ho, “A simple and efficient estimator for hyperbolic
location,” IEEE Trans. Signal Process., vol. 42, no. 8, pp. 1905–1915,
Aug. 1994.

[11] K. W. K. Lui, F. K. W. Chan, and H. So, “Semidefinite programming
approach for range-difference based source localization,” IEEE Trans.

Signal Process., vol. 57, no. 4, pp. 1630–1633, Apr. 2005.

[12] E. G. Larsson, “Cramer-rao bound analysis of distributed positioning in
sensor networks,” IEEE Signal Process. Lett., vol. 11, no. 3, pp. 334–
337, Mar. 2004.

[13] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation

Theory. Upper Saddle River, NJ: Prentice-Hall, 1993.

[14] K. Cheung, W.-K. Ma, and H. So, “Accurate approximation algorithm
for TOA-based maximum likelihood mobile location using semidefinite
programming,” pp. 145–148, May 2004.

[15] W. H. Foy, “Position-location solution by Taylor-series estimation,”
IEEE Trans. Aerosp. Electron. Syst., vol. 12, no. 3, pp. 187–194, Mar.
1976.

[16] K. W. Cheung, H. C. So, W.-K. Ma, and Y. T. Chan, “A constrained least
squares approach to mobile positioning: Algorithms and optimality,”
EURASIP J. Appl. Signal Process., pp. 1–23, 2006.

[17] E. Xu, Z. Ding, and S. Dasgupta, “Source localization in wireless sensor
networks from signal time-of-arrival measurements,” IEEE Trans. Signal

Process., vol. 59, no. 6, pp. 2887–2897, Jun. 2011.

[18] P. Biswas, T.-C. Liang, K.-C. Toh, Y. Ye, and T.-C. Wang, “Semidefinite
programming approaches for sensor network localization with noisy
distance measurements,” IEEE Trans. Autom. Sci. Eng., vol. 3, no. 4,
pp. 360–371, Oct. 2006.

[19] P. Biswas, T.-C. Lian, T.-C. Wang, and Y. Ye, “Semidefinite program-
ming based algorithms for sensor network localization,” ACM Trans.

Sen. Netw., vol. 2, no. 2, pp. 188–220, May 2006.

[20] R. M. Vaghefi and R. M. Buehrer, “Cooperative sensor localization
with NLOS mitigation using semidefinite programming,” in Proc. 9th

Workshop on Positioning, Navigation and Communication (WPNC),
Mar. 2012, pp. 13–18.

[21] R. M. Vaghefi, J. Schloemann, and R. M. Buehrer, “NLOS mitigation
in TOA-based localization using semidefinite programming,” in Proc.

10th Workshop on Positioning, Navigation and Communication (WPNC),
Mar. 2013.

[22] T. Jia and R. M. Buehrer, “A set-theoretic approach to collaborative
position location for wireless networks,” IEEE Trans. Mobile Comput.,
vol. 10, no. 9, pp. 1264–1275, Sept. 2011.

[23] B. M. Sadler and R. J. Kozick, “A survey of time delay estimation
performance bounds,” in Proc. IEEE SAM Workshop, Jul. 2006, pp.
282–288.

[24] T. Rappaport, Wireless Communications: Principles and Practice,
2nd ed. Upper Saddle River, NJ: Prentice-Hall, 2001.

[25] L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM Rev.,
vol. 38, no. 1, pp. 49–95, Mar. 1996.



[26] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, UK:
Cambridge University Press, 2004.

[27] J. F. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for optimization
over symmetric cones,” 1998.

[28] S. R. Drake and K. Dogancay, “Geolocation by time difference of arrival
using hyperbolic asymptotes,” in Proc. IEEE ICASSP, May 2004, pp.
361–364.

[29] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 1.21,” http://cvxr.com/cvx, May 2010.

[30] E. Xu, Z. Ding, and S. Dasgupta, “Reduced complexity semidefinite
relaxation algorithms for source localization based on time difference
of arrival,” IEEE Trans. Mobile Comput., vol. 10, no. 9, pp. 1276–1282,
Sept. 2011.

[31] S. Venkatesh and R. M. Buehrer, “Non-line-of-sight identification in
ultra-wideband systems based on received signal statistics,” IET Mi-

crowaves, Antennas Propagation, vol. 1, no. 6, pp. 1120–1130, Dec.
2007.


